33 research outputs found

    Spectral description of low frequency oceanic variability

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2000A simple dynamic model is used with various observations to provide an approximate spectral description of low frequency oceanic variability. Such a spectrum has wide application in oceanography, including the optimal design of observational strategy for the deployment of floats, the study of Lagrangian statistics and the estimate of uncertainty for heat content and mass flux. Analytic formulas for the frequency and wavenumber spectra of any physical variable, and for the cross spectra between any two different variables for each vertical mode of the simple dynamic model are derived. No heat transport exists in the model. No momentum flux exists either if the energy distribution is isotropic. It is found that all model spectra are related to each other through the frequency and wavenumber spectrum of the stream-function for each mode, Φ(k, I, w, n, φ, λ), where (k, I) represent horizontal wavenumbers, W stands for frequency, n is vertical mode number, and (φ,λ) are latitude and longitude, respectively. Given Φ(k, I, w, n, φ, λ), any model spectrum can be estimated. In this study, an inverse problem is faced: Φ(k, I, w, n, φ, λ) is unknown; however, some observational spectra are available. I want to estimate Φ(k, I, w, n, φ, λ) if it exists. Estimated spectra of the low frequency variability are derived from various measurements: (i) The vertical structure of and kinetic energy and potential energy is inferred from current meter and temperature mooring measurements, respectively. (ii) Satellite altimetry measurements produce the geographic distributions of surface kinetic energy magnitude and the frequency and wavenumber spectra of sea surface height. (iii) XBT measurements yield the temperature wavenumber spectra and their depth dependence. (v) Current meter and temperature mooring measurements provide the frequency spectra of horizontal velocities and temperature. It is found that a simple form for Φ(k, I, w, n, φ, λ) does exist and an analytical formula for a geographically varying Φ(k, I, w, n, φ, λ) is constructed. Only the energy magnitude depends on location. The wavenumber spectral shape, frequency spectral shape and vertical mode structure are universal. This study shows that motion within the large-scale low-frequency spectral band is primarily governed by quasigeostrophic dynamics and all observations can be simplified as a certain function of Φ(k, I, w, n, φ, λ). The low frequency variability is a broad-band process and Rossby waves are particular parts of it. Although they are an incomplete description of oceanic variability in the North Pacific, real oceanic motions with energy levels varying from about 10-40% of the total in each frequency band are indistinguishable from the simplest theoretical Rossby wave description. At higher latitudes, as the linear waves slow, they disappear altogether. Non-equatorial latitudes display some energy with frequencies too high for consistency with linear theory; this energy produces a positive bias if a lumped average westward phase speed is computed for all the motions present.This work is supported financially by National Science Foundation through grants OCE-9529545, Jet Propulsion Laboratory, California Institute of Technology through contract 958125, and University of Texas-Austin through contract UTA-98-0222

    Root cause isolation of propagated oscillations in process plants

    Get PDF
    Persistent whole-plant disturbances can have an especially large impact on product quality and running costs. There is thus a motivation for the automated detection of a plant-wide disturbance and for the isolation of its sources. Oscillations increase variability and can prevent a plant from operating close to optimal constraints. They can also camouflage other behaviour that may need attention such as upsets due to external disturbances. A large petrochemical plant may have a 1000 or more control loops and indicators, so a key requirement of an industrial control engineer is for an automated means to detect and isolate the root cause of these oscillations so that maintenance effort can be directed efficiently. The propagation model that is proposed is represented by a log-ratio plot, which is shown to be ‘bell’ shaped in most industrial situations. Theoretical and practical issues are addressed to derive guidelines for determining the cut-off frequencies of the ‘bell’ from data sets requiring little knowledge of the plant schematic and controller settings. The alternative method for isolation is based on the bispectrum and makes explicit use of this model representation. A comparison is then made with other techniques. These techniques include nonlinear time series analysis tools like Correlation dimension and maximal Lyapunov Exponent and a new interpretation of the Spectral ICA method, which is proposed to accommodate our revised understanding of harmonic propagation. Both simulated and real plant data are used to test the proposed approaches. Results demonstrate and compare their ability to detect and isolate the root cause of whole plant oscillations. Being based on higher order statistics (HOS), the bispectrum also provides a means to detect nonlinearity when oscillatory measurement records exist in process systems. Its comparison with previous HOS based nonlinearity detection method is made and the bispectrum-based is preferred

    Space and time scales of low frequency variability in the ocean

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1998.Includes bibliographical references (leaves 117-120).by Xiaoyun Zang.M.S

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Vertical Random Vibration Analysis of Track-Subgrade Coupled System in High Speed Railway with Pseudoexcitation Method

    No full text
    In order to reduce the ground-borne vibration caused by wheel/rail interaction in the ballastless track of high speed railways, viscoelastic asphalt concrete materials are filled between the track and the subgrade to attenuate wheel/rail force. A high speed train-track-subgrade vertical coupled dynamic model is developed in the frequency domain. In this model, coupling effects between the vehicle and the track and between the track and the subgrade are considered. The full vehicle is represented by some rigid body models of one body, two bogies, and four wheelsets connected to each other with springs and dampers. The track and subgrade system is considered as a multilayer beam model in which layers are connected to each other with springs and damping elements. The vertical receptance of the rail is discussed and the receptance contribution of the wheel/rail interaction is investigated. Combined with the pseudoexcitation method, a solution of the random dynamic response is presented. The random vibration responses and transfer characteristics of the ballastless track and subgrade system are obtained under track random irregularity when a high speed vehicle runs through. The influences of asphalt concrete layer’s stiffness and vehicle speed on track and subgrade coupling vibration are analyzed

    Interaction between baseline HBV loads and the prognosis of patients with HCC receiving anti-PD-1 in combination with antiangiogenic therapy undergoing concurrent TAF prophylaxis

    No full text
    Key points Baseline HBV loads do not affect the prognosis of HCC patients receiving anti-PD-1 in combination with antiangiogenic therapy. Besides, PD-1 inhibitors do not aggravate HBV reactivation and hepatic impairment undergoing concurrent TAF prophylaxis

    Comparative Mitogenomic Analyses of Hydropsychidae Revealing the Novel Rearrangement of Protein-Coding Gene and tRNA (Trichoptera: Annulipalpia)

    No full text
    Gene rearrangement of the mitochondrial genome of insects, especially the rearrangement of protein-coding genes, has long been a hot topic for entomologists. Although mitochondrial gene rearrangement is common within Annulipalpia, protein-coding gene rearrangement is relatively rare. As the largest family in Annulipalpia, the available mitogenomes from Hydropsychidae Curtis, 1835 are scarce, and thus restrict our interpretation of the mitogenome characteristic. In this study, we obtained 19 novel mitogenomes of Hydropsychidae, of which the mitogenomes of the genus Arctopsyche are published for the first time. Coupled with published hydropsychid mitogenome, we analyzed the nucleotide composition evolutionary rates and gene rearrangements of the mitogenomes among subfamilies. As a result, we found two novel gene rearrangement patterns within Hydropsychidae, including rearrangement of protein-coding genes. Meanwhile, our results consider that the protein-coding gene arrangement of Potamyia can be interpreted by the tandem duplication/random loss (TDRL) model. In addition, the phylogenetic relationships within Hydropsychidae constructed by two strategies (Bayesian inference and maximum likelihood) strongly support the monophyly of Arctopscychinae, Diplectroninae, Hydropsychinae, and Macronematinae. Our study provides new insights into the mechanisms and patterns of mitogenome rearrangements in Hydropsychidae

    Direct Growth of Vertically Orientated Nanocavity Arrays for Plasmonic Color Generation

    No full text
    Plasmonic structural colors, arising from resonance interactions between photons and metallic nanostructures, have been developed rapidly for high-end applications. However, common structural color materials and fabrication methods usually have open plasmonic nanostructures and limited scalability, respectively. Here, a new scheme based on Ag nanowire arrays/SiO(2)composite metamaterial films with subwavelength enclosed nanostructures involved that combine a dielectric gap layer and a metal mirror is presented. The whole stacked structure can be simply prepared only via magnetron sputtering without any other procedures. Specifically, by changing deposition parameters, the geometry size and sub-10 nm periodic parameters of the structure unit cell array can be finely tuned in a controllable and reproducible way. By experiments and simulations, it is demonstrated how interwire coupled plasmonic transverse modes in vertically orientated nanocavity arrays control multiple nanocavity standing-wave resonances at visible wavelengths, generating three primary colors-included bright and saturated colors across a wide gamut. Large-area and uniform structural colors, whether on rigid or flexible substrates, show angle-insensitive and air-stable features. In a wider perspective, this work suggests that the material scheme and fabrication advances represent a robust platform for plasmonic color designing, theory exploring, and large-scale manufacturing
    corecore